logo
My Activity

Recently Viewed

You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Elaboration of Aggregated Polysulfide Phases: From Molecules to Large Clusters and Solid Phases

Cite this:Nano Lett.201919107487-7493
Publication Date (Web):September 11, 2019

(Click DOI to download directly)

https://doi.org/10.1021/acs.nanolett.9b03297
Copyright © 2019 American Chemical Society
Article Views
268
Altmetric
-
Citations
-
LEARN ABOUT THESE METRICS

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

Abstract Image

With the increasing strategies aimed at repressing shuttle problems in the lithium–sulfur battery, dissolved contents of polysulfides are significantly reduced. Except for solid-state Li2S2 and Li2S, aggregated phases of polysulfides remain unexplored, especially in well confined cathode material systems. Here, we report a series of nanosize polysulfide clusters and solid phases from an atomic perspective. The calculated phase diagram and formation energy evolution process demonstrate their stabilities and cohesive tendency. It is interesting to find that Li2S6 can stay in the solid state and contains short S3 chains, further leading to the unique stability and dense structure. Simulated electronic properties indicate reduced band gaps when polysulfides are aggregated, especially for solid phase Li2S6 with a band gap as low as 0.47 eV. Their dissolution behavior and conversion process are also investigated, which provides a more realistic model and gives further suggestions on the future design of the lithium–sulfur battery.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.9b03297.

  • Detailed description of computational methods; Geometric structures, dynamic stabilities and electronic structure of polysulfide clusters and solid phases; Additional simulations for dissolved polysulfides in DOL and DME electrolyte; Simulated Raman spectra; Binding strength of graphene toward different phases of polysulfides (PDF)

Cited By


This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    OOPS

    You have to login with your ACS ID befor you can login with your Mendeley account.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect

    This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

    CONTINUE